A reflection grating spectrometer for X-ray Surveyor

Randall L. McEntaffer

Pennsylvania State University

Talk outline

- X-ray grating background
- State of reflection grating technologies
- Development roadmap
- Trade studies/next steps/next level

X-ray Surveyor context

- 10 m focal length, 0.5" telescope HPD
 - 24 μm at focal plane
 - Readout requires <12 µm resolution elements
- R = 5000 (0.2-1.2 keV; mirror has good response up to 2 keV)
 - Grating dispersion gives 4 mÅ spectral lines
 - $R = 31,000 \text{ at } 200 \text{ eV } (62 \text{ Å}, 2^{\text{nd}} \text{ order})$
 - R = 28,000 at 1.2 keV
 - R = 29,450 at 2.0 keV
 - No need to subaperture
- 4000 cm² with 50% optics coverage (retractable arrays)
 - \sim 2 m² total leaves 1 m² for the grating array
 - Requires 40% efficiency from gratings + detectors
 - Changes to 32% if mirror A_{eff} = 2.5 m²

Diffraction gratings

Off-plane diffraction gratings

Fabrication

- Utilizes common nanofab tech
- Developed since Con-X
- Recent advancements due to e-beam lithography

V 2 = 51.74 nm

V 4 = 158.6 nm

Step 6

Step 2

Step 7

Images courtesy of Dmitriy Voronov, LBNL

Diffraction efficiency testing of blazed grating

- Synchrotron tested at LBNL Advanced Light Source (Eric Gullikson)
- Fabricated in collaboration with Howard Padmore's group, specifically Dmitriy Voronov

- Variable line spacing 160 nm to 159.75 nm
- Blazed profile 54.7°

- 10 x 30 mm on silicon
- Coated 5 nm Cr/30 nm Au

Very high diffraction efficiencies

Previous resolving power results

- Tested at MSFC SLF
- Using slumped glass optics from GSFC
- Preliminary analysis
 - 6th order Al K \checkmark_1 , K \checkmark_2
 - LSF same as 0 order
 - Aberration free
 - R ~ 3250
 - 3460 = natural line width limited (2.4 mÅ)
- Tested on small, laminar profile, variable line spaced grating

The first complete next-gen off-plane grating

- Large format
 - $75 \times 96 \times 0.5 \text{ mm}$
- Variable line spacing
 - 7x 0.25 nm steps for 8x periods: 158.25 160 nm
 - Matches 8.4 m optic
- Blazed
 - 54.7°
- Replicated onto fused silica
 - \sim 1 μ m peak-to-valley flatness over piece
- Coated with 5 nm Cr/15 nm Au
- Final fabrication product flight component

Grating alignments

- The spectrum from each grating must overlap at the focal plane
- This must be done for 100s 1000s of gratings

Current alignment studies

Aligned grating modules

- 4x full format gratings aligned ≤±10" in rotational DOFs, ≤±0.2 mm in translational DOFs
- Needs upgraded metrology and environmental control
 - Solutions exist

X-ray alignment testing, pre-shake

- The team is currently at MSFC testing
- Limitation single optic requires actuation of grating stack

PANTER

• X-ray testing with SPO scheduled for September

Vibration testing of aligned module

- Vibration tested yesterday using NASA's General Environmental Verification Standard
- Qualification
 - ¼ G sine sweep
 - 14.1 G RMS: Steps = [3, 5, 7.1, 10, 14.1] 2 dB per step, hold each step 20 sec, hold 14.1 G for 60 seconds
- Aligned module passed qualification in likely worst case scenario
- Post-vibe X-ray testing this weekend

Development Roadmap

- Near-term development driven by current projects
 - SAT ending this year, RTF ending next year
 - OGRE suborbital rocket launch in 2018
 - Arcus instrument studies
- Summary
 - Large format, flight-like gratings have been fabricated, aligned, and tested
- Ongoing diffraction efficiency testing
 - Full format imprint undergoing testing at BESSY PTB
 - Plan to test imprint at ALS (post move)
- Resolving power tests currently ongoing at MSFC
 - Full format, blazed, full illumination test
- Various areas should be improved/studied
 - Imprint process, stress allocations, surface metrology, alignment metrology and control

Possible studies/Trade space in XRS context

- Trade space exists in resolving power, not in effective area
- Proper formats
 - Larger gratings, larger modules = easier to align (fewer elements, potentially thicker substrates)
- Substrate materials
 - Flat silicon
 - Direct write
- Coating materials
 - Low stress/high reflectivity
- Groove density
 - Large trade space that effects focal plane size, and thus, bandpass
- Variable line spacing limit and effect on spectral resolving power
 - Are 0.1 nm steps necessary/sufficient
- Tunable blaze angle
 - Higher blaze = higher dispersion = more resolving power, but potential focal plane effects
- Profile roughness
 - Understand roughness evolution from etch to imprint to coating

Acknowledgements

Collaborators

- SAO Randall Smith, Ryan Allured, Casey DeRoo, Peter Cheimets, Ed Hertz
- LBNL Dmitriy Voronov, Howard Padmore, Eric Gullikson
- GSFC Will Zhang, Ryan McClelland, Kai-Wing Chan
- MSFC Jessica Gaskin, Jeff Kolodziejczak, Steve O'Dell
- MIT Mark Schattenburg, Ralf Heilmann, Mark Bautz
- Nanonex Dave Wang
- Disco Joseph Ferrero, Chris Mihai

Support

- NASA Grants NNX12AI16G, NNX12AF23G, NNX13AD03G, NNX15AC42G
- PSU internal support